شکل ۱-۱: نمودار فرایند پژوهشی ۱۷
شکل ۲- ۱: ساختمان شیمیایی نشاسته ۲۰
شکل ۴- ۱: رنگ فیلمهای ترکیبی نشاسته ssps / ژلاتین با غلظت های متفاوت ( %۰، ۱%، ۳%، ۵%) نانو دی اکسید تیتانیوم ۸۰
شکل ۴- ۲: طیف FTIR فیلمهای ترکیبی نشاسته ssps / ژلاتینی حاوی %۰، ۳% و ۵% نانو دی اکسید تیتانیوم ۹۱
شکل ۴- ۳: میزان جذب نور فیلمهای بایونانوکامپوزیتی در طول موجهای ۲۰۰ تا ۸۰۰ ۹۲
شکل ۴- ۴: درصد عبور نور فیلمهای بایو نانو کامپوزیتی در طول موجهای ۲۰۰ تا ۸۰۰ ۹۳
شکل ۴- ۵: مدل جذب تعادلی چند جمله ای (مرتبه ۳) برای فیلم ترکیبی در مقایسه با بایونانوکامپوزیت ترکیبی محتوی ۵% نانو دی اکسید تیتانیوم ۹۵
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))
شکل ۴- ۶: هاله عدم رشد در فیلم ترکیبی با ۵% نانو دی اکسید تیتانیوم ۹۸
شکل ۴- ۷: اثر نانو اکسید روی بر ناحیه بازدارندگی فیلمهای ترکیبی علیه اشرشیا کلی. ۱۰۰
شکل ۴- ۸: اثر نانومیله های اکسید روی بر ناحیه بازدارندگی فیلمهای ترکیبی علیه استافیلوکوکوس. ۱۰۱
چکیده
هدف از این پژوهش بررسی اثر نانو ذرات دی اکسید تیتانیوم بر خواص فیزیکوشیمیایی، مکانیکی، نمودار جذب تعادلی، عبور دهی نسبت به بخار آب و اکسیژن روی فیلمهای ترکیبی نشاسته ssps/ ژلاتین گاوی می باشد. در این کار پژوهشی فیلمهای ترکیبی نشاسته ssps/ ژلاتین گاوی (۱۰% ژلاتین و ۹۰% نشاسته ssps)، به همراه نانو ذرات دی اکسید تیتانیوم در غلظتهای ۰، ۱، ۲، ۳، و ۵ % با بهره گرفتن از روش کاستینگ انجام شد. کلیه خواص فیزیکوشیمیایی، مکانیکی و عبوردهی نسبت به بخار آب و اکسیژن به روش استاندارد ملی امریکا انجام شد. مدل های جذب تعادلی چند جمله ای(مرتبه سوم) و مدل ۳ پارامتری جذب تعادلی GAB در داده های تجربی براز شد. آزمون مکانیکی نانوبایوکامپوزیت فیلمهای ترکیبی نشاسته ssps/ ژلاتین گاوی / نانودی اکسید تیتانیوم ، افزایش استحکام کششی و مدول یانگ، کاهش درصد کشیدگی را به دلیل افزایش غلظت نانو ذرات نشان داد. خواص فیزیکوشیمیایی از قبیل میزان جذب آب، حلالیت در آب، نفوذ پذیری به بخار آب و اکسیژن، با افزایش میزان نانو ذرات کاهش معنی داری (p<0/05) را نشان داد. همچنین میزان جذب کامل اشعه UV در غلظت ۵% درصد مشاهده شد. نمودارهای FTIR نشان داد که تعاملات انجام شده تماماً فیزیکی بوده و واکنشهای شیمیایی رخ نداده است. با بررسی ایزوترمهای جذب نانو بایو کامپوزیت حاصل، مشخص شد که مقدار رطوبت آب تک لایه کاهش یافته و نمودار به سمت پایین جابجا شده است و این حاکی از آن است که ذرات نانو دی اکسید تیتانیوم، توانایی آبگریز کردن فیلم را دارند. به طور کلی با توجه به بررسیهای انجام شده، فیلمهای خوراکی حاوی نانو دی اکسید تیتانیوم قابلیت به کارگیری به عنوان بستهبندی فعال در صنایع غذایی را دارا میباشند.
واژگان کلیدی : فیلم خوراکی، نشاسته ssps، ژلاتین گاوی، نانو دی اکسید تیتانیوم، خواص مکانیکی، خواص ممانعتی، خواص فیزیکوشیمیایی.
فصل اول: مقدمه
۱-۱- مقدمه
واژه یا اصطلاح بستهبندی به هر ماده، ظرف یا پوششی که جهت جلوگیری از آلودگی طی حملونقل و جا به جایی، حفاظت، بهبود و بازاریابی یا فروش هر فرآورده یا ماده بهکار میرود اتلاق میگردد ( لوپز- روبیو[۱] و همکاران، ۲۰۰۴). هدف از بستهبندی مواد غذایی حفاظت از ایمنی و کیفیت ماده غذایی حاوی آن از زمان تولید تا زمان مصرف توسط مصرف کننده میباشد. یکی دیگر از کاربردهای مهم بستهبندی ماده غذایی حفاظت از محصول در برابر آسیبهای فیزیکی شیمیایی و بیولوژیکی میباشد. شناختهترین مواد بستهبندی دارای خصوصیات ذکر شده مواد بستهبندی پلاستیکی میباشند ( دالین و شورتن[۲]، ۱۹۹۸).
توسعه روز افزون صنایع پتروشیمی و پیشرفت سریع تکنولوژیهای مربوط به تولید پلاستیکهای صنعتی موجب کاربرد هر چه بیشتر پلیمرهای نفتی در صنایع بستهبندی و به خصوص بستهبندیهای ویژهی مواد غذایی شده است. دلیل این امر دسترسی آسان به ماده اولیه، هزینه نسبتا پایین، ویژگیهای مکانیکی مطلوب و بازدارندگی خوب میباشد ( سیراکسا[۳] و همکاران، ۲۰۰۸). با این حال بازیافت نشدن مواد بستهبندی پلاستیکی یکی از محدودیتهای جدی این مواد میباشد. اغلب پلیمرهای سنتزی با منشاء نفتی به تخریب بیولوژیکی مقاوم میباشند و پیوندهای کربنی آنها توسط آنزیم های میکروارگانیسمها شکسته نمیشوند و زیست تخریبپذیر[۴] نمیباشند. دومین مشکل مربوط به محدودیت مکانی به ویژه در مکانهای پر جمعیت است، یافتن مکان مناسب برای دفع زبالههای تولیدی و صنعتی در آینده مشکلتر از پیش میباشد ( هاگارد[۵] و همکاران، ۲۰۰۱). مشکل دیگر بسته بندیهای پلاستیکی مهاجرت ترکیبات استفاده شده در فرمولاسیون مانند نرم کنندهها[۶]، مونومرها و باقیمانده حلال به داخل ماده غذایی میباشد که موجب کاهش ایمنی و ایجاد بد طعمی در ماده غذایی میگردد ( مانهیم و پاسی[۷]، ۱۹۹۰). فاکتور بعدی که باید مورد توجه قرار گیرد وابستگی مواد بستهبندی پلاستیکی به مواد نفتی میباشد. با توجه به محدودیت و افزایش قیمت این منابع یافتن روشهای مقرون به صرفه تولید مواد بسته بندی مورد توجه قرار گرفته است. علاوه بر عوامل زیست محیطی ذکر شده بسته بندی مواد غذایی با تغییرات قابل توجهی در توزیع مواد غذایی شامل جهانی شدن زنجیرهی غذایی، افزایش تمایل مصرف کنندگان به مصرف غذاهای تازهتر و با کیفیت بهتر و ایمنتر مواجه شده است ( لوپز- روبیو[۸] و همکاران، ۲۰۰۴).
آلودگی ناشی از مواد بستهبندی تولید شده از مشتقات نفتی و مشکلات ناشی از روشهای مختلف حذف این مواد توجه پژوهشگران را در طی سالهای اخیر به یافتن جایگزینهای مناسب برای این نوع مواد بستهبندی معطوف کرده است ( فانگ[۹] و همکاران، ۲۰۰۳). به لحاظ مشکلات زیست محیطی بسیاری از مواد بسته بندی، توجه ویژه ای به پلیمرهای زیستی و تجزیه پذیر به منظور توسعه مواد بسته بندی غذایی دوست دار طبیعت معطوف شده است ( لوپز- روبیو[۱۰] و همکاران، ۲۰۰۴). از طرفی استفاده از محصولات جنبی (By-products) کشاورزی و صنعت غذایی به منظور توسعه مواد زیست تخریب پذیر برای جایگزینی پلیمرهای بر پایه نفت در کاربردهای بسته بندی علاقه مندی روبه رشدی را در پی داشته است ( دالین و شورتن[۱۱]، ۱۹۹۸). استفاده از فیلمهایی با منشا طبیعی(نشاسته-پروتئین و …)به دلیل پتانسیل این مواد در جایگزینی پلیمرهای رایج در بسته بندی موادغذایی و به علت مقاومت آنها در برابر نفوذ گازها ،رطوبت، و مواد محلول ازدهه قبل رایج شده است ( جان استون- بانک[۱۲]، ۱۹۹۰).
۱-۲- پیش زمینه
در جهان حدود ۱۲۵ میلیون تن پلاستیک تولید می شود که حدود ۳۰ میلیون تن آن در بخش بسته بندی مصرف می شود. آلودگی ناشی از مواد بسته بندی تولید شده از مشتقات نفتی و مشکلات ناشی از روش های مختلف آلودگی زدایی (مانند دفن کردن ، سوزاندن و بازیافت آنها) توجه پژوهشگران را در طی سال های اخیر به یافتن جایگزین های مناسب برای این نوع مواد بسته بندی معطوف کرده است. (فانگ[۱۳]،۲۰۰۳).
تولید بیوپلیمرهایی که از منابع تجدیدپذیر بدست میآیند بر خلاف پلیمرهای سنتزی که بیشتر منشا نفتی دارند در محیط طبیعی تجزیه پذیر هستند و موجب حفظ منابع تجدید ناپذیر میگردد. این بیوپلیمرها که قابلیت برگشت به طبیعت را دارند از محصولات کشاورزی بدست آمده و موجب آلودگی محیط زیست نمیشوند و در فرایند کمپوست توسط میکروارگانیسم ها به محصولات طبیعی مانند آب، متان، دی اکسید کربن، و توده زیستی تبدیل میشوند. پلیمرهایی که پس از فرایند تجزیه توسط میکروارگانیسم ها کاملا به محصولات طبیعی تبدیل میشوند زیست تخریب پذیر نامیده میشوند (قنبرزاده و همکاران، ۱۳۸۸).
پلیمرهای زیست تخریبپذیر را میتوان بر اساس ترکیب شیمیایی، روش سنتز، روش فرایند، اهمیت اقتصادی، کاربرد، منشاء و …. طبقه بندی نمود. پلیمرهای زیست تخریب پذیر را بر اساس منشا میتوان به پلیمرهای طبیعی یا بیوپلیمرها که از منابع تجدید شونده حاصل میشوند و پلیمرهای سنتزی که از نفت خام (یک منبع غیر تجدید شونده) سنتز میشوند، طبقه بندی نمود.
بیوپلیمرها با منشاء طبیعی را میتوان به ۶ زیر گروه طبقه بندی کرد:
۱)پلی ساکاریدها، مانند: نشاسته، سلولز، لیگنین و کیتین
۲)پروتئینها، مانند: ژلاتین، کازئین، گلوتن گندم، ابریشم، پشم
۳)لیپیدها، که شامل: چربیهای حیوانی و روغنهای گیاهی مانند روغن کرچک
۴)پلی استرهای تولید شده بوسیله میکروارگانیسمها یا بوسیله گیاهان مانند پلی هیدورکسی آلکانوآت ها(PHA) و پلی ۳- هیدورکسی بوتیرات(PHB)
۵)پلی استرهای سنتز شده از منومرهای با منشا طبیعی مانند: پلیلاکتیک اسید (PLA)
۶)دیگر پلیمرهای طبیعی مانند کائوچوی طبیعی ( اسمیت[۱۴]، ۲۰۰۵).
بسته بندیهای زیستی حاصل از بیوپلیمرهای خالص دارای سرعت زیست تخریب پذیری بالاتری نسبت به فیلمهای آلیاژ شده میباشند ولی کیفیت مکانیکی و نفوذپذیری آنها به نسبت پایین تر است (قنبرزاده و همکاران، ۱۳۸۸). دلایل استفاده از این نوع بسته بندی عبارتند از: جلوگیری از انتقال رطوبت، جلوگیری از خروج ترکیبات فرار موجود در ماده غذایی، کاهش دهنده سرعت تنفس، به تاخیر انداختن تغییرات در بافت ماده غذایی، مانعی بسیار عالی در برابر عبور چربیها و روغن ها، عبوردهی بسیار انتخابی گازهایی نظیر اکسیژن و دی اکسیدکربن (ایران منش، ۱۳۸۸).
فیلمهای خوراکی لایه نازکی از بیوپلیمرها هستند که برای بهبود و نگه داری بهتر مواد غذایی بر روی سطح ماده غذایی کشیده میشوند و یا بین اجزای مواد غذایی قرار داده میشوند. البته عمدتا” فیلمها و پوشش های خوراکی برای حذف بسته بندی غیر خوراکی استفاده نمیشوند بلکه به همراه بسته بندیهای مرسوم به بهبود کیفیت و ماندگاری کمک می کنند و تعداد لایه های بسته بندی را کاهش می دهند و بعد از این که بسته باز شد حفاظت از غذا را ادامه می دهند. فیلمهای خوراکی همچنین ممکن است به عنوان لایهای از بسته بندیهای چند لایه مورد استفاده قرار گیرند (قنبر زاده و همکاران، ۱۳۸۸).
سایر مزایای فیلمهای خوراکی نسبت به مواد بستهبندی پلیمری مصنوعی را میتوان به صورت زیر خلاصه کرد :
۱- مصرف توام فیلمها با محصول بستهبندی شده بدون اینکه باقیماندهای دور ریخته شود.
۲- فیلمها باعث افزایش خواص ارگانولپتیک مواد بستهبندی میشوند، بدین ترتیب، ترکیبات مختلف نظیر طعمدهندهها، رنگها و شیرینکنندهها، به همراه آنها منتقل میشوند و میتوانند به عنوان انتقال دهنده مواد ضدمیکروبی و آنتیاکسیدان بهکار روند.
۳- از مهاجرت آروما، طعم و رنگ ماده غذایی به محیط و بین اجزای موادغذایی جلوگیری می کنند.
۴- فیلمها میتوانند به عنوان مکمل ارزش تغذیهای مواد غذایی باشند.
۵- فیلمها باعث کاهش تبادل گازهای تنفسی بین محیط و ماده غذایی میگردند.
۶- میتوانند بهمنظور جلوگیری از حذف رطوبت و مهاجرت مواد محلول در مواد غذایی طراحی شوند.
۷- فیلمها میتوانند بهآسانی برای تولید میکروکپسولهای طعم دهنده مواد غذایی و عوامل تخمیر کننده بکار روند (پترسن[۱۵]، ۱۹۹۹).
در سالیان اخیر روی بسته بندی مواد غذایی بیشتر روی فیلمهای زیست سازگار از جمله روی فیلمهای تهیه شده از پروتئینهای خوراکی با منشآ گیاهی و حیوانی (زیئن، گلوتن گندم، سویا، بادام زمینی، ژلاتین، کلاژن، آلبومین و پروتئنهای آب پنیر)، پلی ساکاریدی( پکتین، سلولز، کیتوزان و ….) و یا ترکیبی از آنها استوار بوده است ( شکوه صارمی و همکاران، ۱۳۸۵).
لایه های خوراکی و زیست تجزیه پذیری که از منابع مختلف به دست می آیند توجه زیادی به خود جلب کرده اند.مصرف کنندگان و پردازشگرهای نظیر به کاهش مشکلات محیطی مربوط به ضایعات بسته بندی مصنوعی اقدام کرده اند. در دهه گذشته، درباره لایه های بسته بندی خوراکی و زیست تجزیه پذیر، به خاطر مزایای فراوانی که در مقایسه با لایه های بسته بندی مصنوعی دارند تحقیقات زیادی انجام شده است.گر چه جایگزینی کامل لایه های بسته بندی مصنوعی آناً ممکن نیست، لایه های خوراکی و زیست تجزیه پذیر پتانسیل کاهش و جایگزینی لایه های مصنوعی شیمیایی را در بعضی از کاربردهای آتی خواهند داشت.موادی که برای تشکیل لایه ها و روکش ها در دسترس هستند جزو دسته های پروتئینها، پلی ساکارید ها، لیپیدها و رزین ها هستند. ( لی راها ونگ[۱۶] و همکاران، ۲۰۱۱). پوشش مواد غذایی با فیلم های خوراکی دارای مزایای زیادی است از جمله سلامتی ویژگی های حسی و اقتصادی بودن و اینکه خود پوشش نیز دارای ارزش تغذیه ای است مانع فساد وآلودگی میکروبی میشوند و باعث استحکام و یکپارچگی مواد غذایی هستند ( دویتینک[۱۷] و همکاران، ۱۹۹۸ ؛ نوسینوویچ[۱۸]، ۱۹۹۷ ؛ اوتارا[۱۹] و همکاران، ۲۰۰۲).
۱-۳- بیان مسأله
بسته بندیهای زیست تخریب پذیر که قابلیت خوراکی بودن و مصرف به همراه ماده غذایی را دارند شامل فیلم ها و پوشش های خوراکی میباشند. فیلم های خوراکی لایه هایی از مواد قابل هضم هستند که به عنوان پوشش مواد غذایی(پوشش های خوراکی) و یا به عنوان مانعی بین غذا و سایر مواد و یا محیطها استفاده میشوند. پوشش های خوراکی قابل تجزیه به وسیله میکروارگانیسمها مصرف شده و به ترکیبات ساده تبدیل میشوند. پلی ساکاریدهایی مانند کیتوزان، نشاسته و سلولز، پروتئینهایی مانند زئین و کلاژن و چربیهایی مانند تری گلیسیریدها و اسیدهای چرب میتوانند به عنوان فلیم های خوراکی استفاده شوند. فیلم های پلی ساکاریدی قیمت پایینی دارند اما مانع مناسبی در برابر نفوذ رطوبت نیستند. فیلمهای پروتئینی دارای قابلیت های مفیدی مثل شکل پذیری در فرایند، خاصیت ارتجاعی و ممانعت خوب در برابر نفوذ اکسیژن هستند ( نظیر پلی ساکاریدها ) اما عبور ناپذیری آنها در برابر نفوذ آب ضعیف است مانند پلی ساکاریدها. فیلمهای چربی خواص نفوذ ناپذیری خوبی در برابر رطوبت دارند اما مقاومت آنها در برابر عبور اکسیژن و خصوصیات مکانیکی شان ضعیف است. اکسیژن بالا در بسته بندی غذا به رشد میکروب، حذف طعم و بوی ایجاد شده، تغییر رنگ و از بین رفتن غذا کمک می کند و علت عمده کاهش زمان نگهداری غذاها به شمار میرود. بنابراین کنترل سطح اکسیژن در بسته بندی غذا امری مهم تلقی می شود. بخار آب تشکیل شده در داخل بسته بندی باعث رشد میکرواگانیسمها و در نتیجه از بین رفتن کیفیت غذا و کاهش زمان ماندگاری میگردد. یکی از راه های رفع این نقایص در فیلمهای پلیمری زیستی ایجاد ترکیب هایی از آنها با نانو ذرات است که موجب تحقیق و توسعه نانو کامپوزیت های زیستی شده است. استفاده از نانو تکنولوژی در این پلیمرها ممکن است امکانات جدیدی را برای بهبود نه تنها ویژگیها بلکه به طور همزمان بهبود ارزش، قیمت و راندمان را سبب شود. انداره نانو ذرات موجب پراکندگی و توزیع خوب آنها می شود. این نانو کامپوزیت ها میتوانند به طور قابل توجهی ویژگی های مکانیکی، حرارتی، ممانعتی و فیزیکوشیمیایی بهبود یافته ای در مقایسه با پلیمرهای اولیه و کامپوزیت های میکرو سایز مرسوم نشان دهند ( سورنتینو[۲۰] و همکاران، ۲۰۰۷). رشد میکروب ها روی سطح مواد غذایی دلیل اصلی فساد مواد غذایی و بیماریزایی در مصرف کننده می باشد. به این دلیل تلاش های زیادی برای تیمار این سطوح به روش های گوناگون مانند اسپری یا غوطه ور کردن در مواد نگهدارنده مختلف صورت گرفته است. فیلمهای خوراکی به تنهایی و یا همراه با مواد ضد میکروبی، موجب مهار رشد باکتریها در سطح مواد غذایی و در نتیجه فساد آنها میشوند. فناوری نانو می تواند در مواردی مانند افزایش مقاومت به نفوذ در پوشش ها، افز ایش ویژگی های ممانعتی، افزایش مقاومت در برابر گرما، گسترش ضد میکروب های فعال و سطوح ضد قارچ کارساز باشد( سورنتینو[۲۱] و همکاران، ۲۰۰۷). گروه تحقیقاتی دانشگاه انگلیسی لیدز دریافتند که نانو ذرات اکسید روی و اکسید منیزیم باعث از بین بردن میکروارگانیسم ها می شوند که میتوانند کاربرد زیادی در بسته بندی مواد غذایی داشته باشند.این شیوه می تواند افزودن مقدار زیاد ضدمیکروب ها به درون توده غذا را کاهش دهد. آزاد شدن کنترل شده ضد میکروب ها به سطح غذاامتیازات زیادی نسبت به روش های دیگر مانند فروبری و اسپری کردن دارد ( آریو[۲۲] و همکاران، ۲۰۱۱ ). در این دو فرایند اخیر ماده ضدمیکروبی به سرعت از سطح ماده غذایی به داخل آن نفوذ می کند ( منتشر می شود ) و در نتیجه خاصیت ضدمیکروبی در سطح کاهش مییابد. مواد ضد میکروبی باقی مانده، در تماس با مواد فعال موجود در سطح خنثی می شوند و میکروب های آسیب دیده ممکن است دوباره فعال گردند. برای مثال ثابت شده است که امولسیفایرها و اسیدهای چرب با نایسین واکنش داده و خواص آن را کاهش می دهند.
۱-۴- اهمیت موضوع
امروزه بخش بزرگی از مواد استفاده شده در صنعت بسته بندی از فرآوردهای نفتی و پتروشیمی به دست میآیند که غیر قابل تجزیه در طبیعت بوده و مشکل زیست محیطی ایجاد می کنند. از این رو محققین همواره به دنبال راه حلهایی برای این موضوع میباشند. رشد روز افزون محصولات زیستی و توسعه تکنولوژیهای نوین سبب کاهش وابستگی به استفاده از سوختهای فسیلی گردیده است. در چند دهه اخیر میزان توجه و علاقه افراد به استفاده از بیوپلیمرها به دلیل افزایش بیشتر آگاهی مصرف کنندگان، افزایش قیمت نفت خام، افزایش آلودگیهای زیست محیطی و تجزیه ناپذیر بودن پلیمرهای نفتی و توجه به گرمای جهانی افزایش یافته است و سبب شده تلاش های فراوانی در جهت تولید مواد بستهبندی با منشا طبیعی(پروتئین،چربی و کربوهیدرات) به صورت فیلم یا پوشش صورت گیرد. اینگونه بیوپلیمرها در مقایسه با بهره گرفتن از پلاستیکها اثرات مخرب کمتری بر محیط زیست دارند ( پین[۲۳] و همکاران، ۱۹۹۲).
به طور کلی مصرف کنندگان مواد بسته بندی را تقاضا می کنند که طبیعیتر، از بین روندهتر و دارای پتانسیل تجزیه پذیری زیستی و نیز قابلیت برگشت پذیری داشته باشد. به همین دلیل علاقه به مطالعه و توسعه بیوپلیمرها با منابع تجدید شدنی که قادر به تجزیه توسط فرایند کود شدن طبیعی میباشند برای کاربرد بسته بندی افزایش یافته است. فیلم و پوشش خوراکی لایه نازکی از مواد خوراکی است که توسط فرآیندهای مناسب صنعت غذا ساخته شده و برای دستیابی به اهدافی از قبیل کنترل انتقال رطوبت، محدود کردن انتقال گازها، به تعویق انداختن مهاجرت روغن و چربی، حمل افزودنی های غذایی مانند عوامل ضد میکروبی و آنتی کسیدان ها، بهبود کیفیت و افزایش ماندگاری بر روی محصول غذایی قرار میگیرد. زیست تخریب پذیر بودن و خوراکی بودن این ترکیبات سبب شده است که به طور وسیع مورد پژوهش و کاربرد قرار گیرند. از جمله کاربردهای فیلمهای خوراکی در ارتباط با مواد غذایی می توان به پوشش دادن آنها بر سطح فرآورده های قنادی، میوه ها و سبزی های تازه، برخی فرآورده های گوشتی، برخی فرآورده های لبنی، شکلات، غلات صبحانه ای، طیور و ماهی، فرآورده های منجمد، فرآورده های خشک شده و نظایر اینها اشاره داشت (ناکائو[۲۴] و همکارانش، ۲۰۰۷ ).
رشد فزاینده علاقه نسبت به فیلمهای ساخته شده از بیوپلیمرهای طبیعی از قبیل نشاسته به عنوان یک منبع جایگزین به منظور حل پلیمرهای غیر قابل تجزیه و انهدام ضایعات شکل گرفته از پلیمرهای سنتیک مطرح شده است. از این رو، استفاده از بیوپلیمرهای کشاورزی که از نظر زیستی به راحتی تجزیهپذیر هستند نه تنها باعث حل این مشکلات می شود بلکه به ارائه کاربرد جدیدی از تولیدات مازاد کشاورزی نیز می پردازد. به واسطه نگرانیهای محیطی، ترکیب مواد نگهدارنده زیستی با فیلمهایی که از نظر زیستی تجزیه پذیر میباشند مناسبتر از ترکیب با فیلمهای پلاستیکی است (تورهان[۲۵] و همکاران، ۲۰۰۴).
در گروه مواد تجدید شدنی بر پایه ی مواد پلیمری زیست تخریب پذیر، نشاسته یکی از قابل توجه ترین مواد بود به دلیل این که به آسانی در دسترس است و می تواند محصولات نهایی موثری ایجاد کند. نشاسته فرم اصلی کربوهیدرات در گیاهان است. نشاسته یک پلیمر نیمه بلورین تشکیل شده از یک مخلوطی از آمیلوز یک پلی ساکارید خطی وآمیلوپکتین یک پلی ساکارید منشعب میباشد. نسبت مقدار آمیلوز و آمیلوپکتین به منبع گیاهی بستگی دارد. در کاربرد های بسته بندی، مواد برپایه نشاسته ، به دلیل زیست تخریب پذیری، به طور گسترده در دسترس بودن و هزینه ی کم مورد توجه زیاد واقع شده اند( زپا[۲۶] و همکاران، ۲۰۰۸)
SSPSاز خانواده پکتین مانند از بیوپلیمر اسیدی استخراج شده از محصول فرعی کربوهیدرات باقی مانده از تولید پروتئین سویا جدا شده تولید می شود. ( شوری[۲۷] و همکاران، ۱۹۸۵). SSPS می تواند فیلمهای زیست تجزیه پذیر با ظاهر خوب و خواص مکانیکی رضایت بخش تولید کنند ( سالار باش[۲۸] و همکاران، ۲۰۱۳).
در سال های اخیر فیلم و پوشش خوراکی بر پایه پروتئین با توجه به خواص عملکردی و ویژگیهای تغذیه ای آن توجه زیادی را به خود جلب کرده است. یک نوع از پروتئینها ژلاتین تهیه شده از کلاژن می باشد که کاربرد فراوانی در فیلم های خوراکی دارد (ناکائو[۲۹] و همکارانش، ۲۰۰۷ ). ژلاتین خواص شکل پذیری فیلم و مکانیکی خوبی دارد. به علاوه در میان هیدروکلوئیدها در ایجاد برگشت پذیری حرارتی با نقطه ذوب نزدیک به دمای بدن بی نظیر است که بویژه در کاربردهای خوراکی و دارویی مهم است. هر چند ژلاتین به عنوان پروتئین حیوانی از پروتئین گیاهی گرانتر است. ژلاتین از جمله موادی است که به دلیل استحکام کششی، انعطاف پذیری قابلیت دسترسی بالا و پلاستیک کنندگی در صنعت بسته بندی مزایای زیادی به همراه دارد به عنوان مثال جایگزینی ژلاتین در بسته بندی گوشت. فیلمهای پروتئینی به خوبی به سطح هیدروفیل متصل میشوند، ممانعت از اکسیژن و دی اکسید کربن می کنند اما به نفوذ آب مقاوم نمیباشند ( کوآنگ یئون لی[۳۰] و همکاران، ۲۰۰۴؛ ناکائو[۳۱] و همکارانش، ۲۰۰۷ ). فیلمهای ژلاتینی علیرغم برخورداری از ویژگیهای ممانعتی خوب در برابر اکسیژن، فاقد خواص مکانیکی و ممانعتی مناسب هستند که کاربردهای بالقوه شان را محدود می کند. آلودگی مواد غذایی بسته بندی شده تا حد زیادی به نقل و انتقالات رخ داده بین غذای درون بسته و محیط خارج آن بستگی دارد. افزودن پرکننده های با حداقل اندازه در مقیاس نانو به فیلم های خوراکی و تولید پلیمرهای زیست نانو کامپوزیت می تواند راه حل جدیدی برای این مشکل ارائه نماید. نانو ذرات وقتی به پلیمر اضافه میشوند علاوه بر تقویت خواص پلیمر میتوانند دارای فعالیت ضد میکروبی نیز باشند ( لی[۳۲] و همکاران، ۲۰۰۴). این نسل جدید کامپوزیتها بهبود چشمگیری در مقایسه با پلیمرهای اولیه نشان می دهند. برخی از نانو مواد میتوانند ویژگی های نفوذ پذیری مواد بسته بندی را تغییر داده سبب بهبود ویژگیهای مکانیکی، شیمیایی، حرارتی و میکروبی شوند. نانو سایز کردن ذرات موجب افزایش سطح نانو فیلرها و در نتیجه افزایش سطح داخلی و واکنش میان فیلر و پلیمر و در نتیجه بهبود زیادی در خواص پلیمر می شود. به عنوان مثال نانو ذرات اکسید مس، منیزیم و نقره دارای خاصیت ضد میکروبی هستند. نانو ذرات نقره میتوانند بیش از ۶۵۰ نوع باکتری شناخته شده را از بین ببرنند ( آریو[۳۳] و همکاران، ۲۰۱۱ ). از نانو کامپوزیتهای خاک رس نیز میتوان برای تولید مواد اولیه بطری های ماء الشعیر استفاده کرد. مهمترین خصوصیت این مواد بازدارندگی آنها از خروج گاز دی اکسید کربن از این نوشیدنیهاست. سیلیکات کلسیم نانو ساختار برای بسته بندی مواد غذایی فسادپذیر استفاده شده اند. نانو ذرات سیلیکات کلسیم دارای ساختار متخلخل و خاصیت جذب رطوبت هستند. یکی از اکسیدهای معدنی ای که در سالهای اخیر بیش از پیش در دنیای نانو به ویژه در پوشش دهی منسوجات و تولید کرمهای ضد آفتاب و بسته بندی مورد استفاده قرار گرفته دی اکسید تیتانیوم است ( چامورن[۳۴] و همکاران، ۲۰۰۸). این ماده در صنعت رنگ سازی کاربردهای فراوان دارد ولی ذرات کوچک نانو متری آن به دلیل داشتن خواص فوق العاده و منحصر به فرد موارد استفاده زیادی پیدا کرده اند. از این ماده در تصفیه، گندزدایی، رنگ زدایی، بوزدایی،ساخت سرامیک های ویژه، از بین بردن سلول های سرطانی، ساخت فتوکاتالیست ها، کاغذ سازی، تولد لوازم بهداشتی و آرایشی، تهیه پوشش های محافظ در مقابل اشعه ماوراء بنفش و ایجاد درخشندگی استفاده می شود. دی اکسید تیتانیوم در اندازه نانو متری یک فوتوکاتالیست ایده آل است که مهمترین دلیل وجود این خاصیت در این ماده قابلیت جذب اشعه فرابنفش است. فوتونهای فرابنفش بسیار پر انرژی هستند و در بیشتر موارد می توانند به سادگی باعث تخریب اجسام گردند. این پدیده معمولاً از طریق شکست پیوندهای شیمیایی در آنها صورت میگیرد. بنابراین دی اکسید تیتانیوم با جذب اشعه فرابنفش و به واسطه خاصیت فوتوکاتالیستی خود می تواند پوششی ضد باکتری روی سطوح ایجاد کند و هم چنین مانع از عبور اشعه گردد. واکنش فوتوکاتالیستی دی اکسید تیتانیوم برای غیرفعالسازی طیف وسیعی از میکروارگانیسمها استفاده شده است. TiO2 غیر سمی میباشد و توسط اداره کل غذا و دارو امریکا (FDI) برای استفاده در غذای انسان، داروها، مواد در تماس با غذا و مواد آرایشی تأیید شده است. اثرات ضد باکتریایی و ضد قارچی دی اکسید تیتانیوم روی اشرشیا کلای، سالمونلا کلرئاسویس، ویبریو پاراهمولیتیکوس، لیستریا مونو سیتوژنز، سودو موناس آئروژنیوسا، استافیلوکوکوس اورئوس، دیاپورته اکتینیدیا، پنی سیلیوم اکسپنسوم گزارش شده است ( کیم[۳۵] و همکاران، ۲۰۰۳ ؛ چو[۳۶] و همکاران، ۲۰۰۴ ؛ مانرات[۳۷] و همکاران، ۲۰۰۶ ؛ مانس[۳۸] و همکاران، ۱۹۹۹).
تلفیق نانو ذرات فلزی دی اکسید تیتانیوم در فیلم ترکیبی نشاسته ssps / ژلاتین، موجب ایجاد نوعی بسته بندی فعال میگردد. بسته بندی فعال نوعی بسته بندی است که علاوه بر داشتن خواص بازدارندگی اصلی بسته بندی های معمول (مانند خواص بازدارندگی در برابر گازها، بخارآب و تنش های مکانیکی)، با تغییر شرایط بسته بندی، ایمنی، ماندگاری و یا ویژگیهای حسی ماده غذایی را بهبود میبخشد و در عین حال کیفیت ماده غذایی را حفظ می کند.
۱-۵- اهداف تحقیق
۱-۵-۱- هدف اصلی
هدف اصلی از این تحقیق تهیه فیلمهای ترکیبی نشاسته ssps/ ژلاتین گاوی غنی شده با نانو ذرات دی اکسید تیتانیوم می باشد. اثر این نانو ذرات بر خواص فیزیکوشیمیایی و نمودار تعادلی رطوبت فیلمهای تهیه شده از ژلاتین گاوی بررسی شده است. خاصیت جذب اشعه UV نانو ذرات TiO2 این نانو ذرات را گزینهای مناسب جهت تلفیق با فیلم ترکیبی نشاسته ssps/ ژلاتین گاوی خصوصاً برای بسته بندی و نگهداری مواد غذایی حساس میسازد. همچنین با توجه به نقصان در جذب عنصر روی مواد غذایی توسط بدن و عوارض ناشی از کمبود آن، این فیلمها می تواند تا حدی در جبران این مشکل مؤثر باشند. ارزش تغذیه ای و زیست تخریب پذیر بودن و شکل پذیری خوب نشاسته و ژلاتین موجب اهمیت کاربرد آن در تهیه فیلمهای خوراکی جهت بسته بندی مواد غذایی و داروها میباشد.